Supercongruences and binary quadratic forms
Volume 199 / 2021
Abstract
Let be a prime, and let a,b be two rational p-adic integers. We present general congruences for \sum _{k=0}^{p-1}\binom ak\binom {-1-a}k\frac p{k+b}\pmod {p^2}. Let \{D_n\} be the Domb numbers given by D_n=\sum _{k=0}^n\binom nk^2\binom {2k}k\binom {2n-2k}{n-k}. We also prove that \sum _{n=0}^{p-1}\frac {D_n}{16^n}\equiv \sum _{n=0}^{p-1}\frac {D_n}{4^n}\equiv \begin {cases} 4x^2-2p\pmod {p^2} &\text {if $3\mid p-1$ and so $p=x^2+3y^2$,}\\ 0\pmod {p^2} &\text {if $p\equiv 2\pmod 3$,}\end {cases} which was conjectured by Z. W. Sun.