A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Asymptotics for the Dirichlet coefficients of symmetric power $L$-functions

Volume 199 / 2021

Shu Luo, Huixue Lao, Aiyue Zou Acta Arithmetica 199 (2021), 253-268 MSC: Primary 11F30; Secondary 11F66. DOI: 10.4064/aa191112-24-12 Published online: 14 June 2021

Abstract

Let $L(\mathop {\rm sym}^jf, s)$ be the $j$th symmetric power $L$-function attached to a holomorphic Hecke eigencuspform $f(z)$ for the full modular group $\Gamma =\mathrm {SL}(2,\mathbb {Z})$, and $\lambda _{\mathop {\rm sym}^jf}(n)$ denote its $n$th Dirichlet coefficient. We establish asymptotic formulas for $\sum _{n\leq x}\lambda _{\mathop {\rm sym}^2f}^j(n)$ and $\sum _{n\leq x}\lambda _{\mathop {\rm sym}^jf}^2(n)$ for $j=3,4,5$, $6,7,8,$ and obtain two non-trivial upper bounds for the mean-square of the error term related to $\sum _{n\leq x}\lambda ^2_{\mathop {\rm sym}^jf}(n)$ for $j=7,8.$

Authors

  • Shu LuoSchool of Mathematics and Statistics
    Shandong Normal University
    250358 Ji’nan, China
    e-mail
  • Huixue LaoSchool of Mathematics and Statistics
    Shandong Normal University
    250358 Ji’nan, China
    e-mail
  • Aiyue ZouSchool of Mathematics and Statistics
    Shandong Normal University
    250358 Ji’nan, China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image