A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Remarks on the Selberg–Delange method

Volume 200 / 2021

Régis de la Bretèche, Gérald Tenenbaum Acta Arithmetica 200 (2021), 349-369 MSC: Primary 11N37. DOI: 10.4064/aa201024-26-5 Published online: 27 September 2021

Abstract

Let $\varrho $ be a complex number and let $f$ be a multiplicative arithmetic function whose Dirichlet series takes the form $\zeta (s)^\varrho G(s)$, where $G$ is associated to a multiplicative function $g$. The classical Selberg–Delange method furnishes asymptotic estimates for the averages of $f$ under the assumptions of either analytic continuation for $G$, or absolute convergence of a finite number of derivatives of $G(s)$ at $s=1$. We consider a different set of hypotheses, not directly comparable to the previous ones, and investigate how they can yield sharp asymptotic estimates for the averages of $f$.

Authors

  • Régis de la BretècheUniversité de Paris
    Sorbonne Université, CNRS
    Institut de Math. de Jussieu – Paris Rive Gauche
    F-75013 Paris, France
    e-mail
  • Gérald TenenbaumInstitut Élie Cartan
    Université de Lorraine
    BP 70239
    F-54506 Vandœuvre-lès-Nancy Cedex, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image