A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Annulateurs de Stickelberger des groupes de classes logarithmiques

Volume 201 / 2021

Jean-François Jaulent Acta Arithmetica 201 (2021), 241-253 MSC: Primary 11R23; Secondary 11R37, 11R70. DOI: 10.4064/aa201127-22-6 Published online: 18 October 2021

Abstract

For any odd prime number $\ell $ and any abelian number field $F$ containing the $\ell $th roots of unity, we show that the Stickelberger ideal annihilates the imaginary component of the $\ell $-group of logarithmic classes and that its reflection annihilates the real component of the Bertrandias–Payan module. This leads to a very simple proof of annihilation results for the so-called wild étale $\ell $-kernels of $F$.

Authors

  • Jean-François JaulentInstitut de Mathématiques de Bordeaux
    Univ. Bordeaux & CNRS
    351 cours de la Libération
    F-33405 Talence Cedex, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image