A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Rational points on an intersection of diagonal forms

Volume 203 / 2022

Simon Boyer, Olivier Robert Acta Arithmetica 203 (2022), 165-194 MSC: Primary 11P55, 11L15; Secondary 11L07. DOI: 10.4064/aa210310-18-12 Published online: 11 April 2022

Abstract

We consider intersections of $n$ diagonal forms of degrees $k_1 \lt \cdots \lt k_n$, and we prove an asymptotic formula for the number of rational points of bounded height on these varieties. The proof uses the Hardy–Littlewood method and recent breakthroughs on the Vinogradov system. We also give a sharper result for one specific value of $(k_1,\ldots ,k_n)$, using a technique due to Wooley and an estimate on exponential sums derived from a recent approach in the van der Corput method.

Authors

  • Simon BoyerUniversité de Lyon
    Université Claude-Bernard Lyon 1
    CNRS UMR 5208
    Institut Camille Jordan
    F-69622 Villeurbanne, France
    e-mail
  • Olivier RobertUniversité de Lyon
    Université de Saint-Étienne
    CNRS UMR 5208
    Institut Camille Jordan
    F-42000 Saint-Étienne, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image