A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Uniform explicit Stewart theorem on prime factors of linear recurrences

Volume 206 / 2022

Yuri Bilu, Sanoli Gun, Haojie Hong Acta Arithmetica 206 (2022), 223-243 MSC: Primary 11B39; Secondary 11B37. DOI: 10.4064/aa211116-13-11 Published online: 16 December 2022

Abstract

Stewart (2013) proved that the largest prime divisor of the $n$th term of a Lucas sequence of integers grows quicker than $n$, answering famous questions of Erdős and Schinzel. In this note we obtain a fully explicit and, in a sense, uniform version of Stewart’s result.

Authors

  • Yuri BiluInstitut de Mathématiques de Bordeaux
    Université de Bordeaux & CNRS
    Talence, France
    e-mail
  • Sanoli GunThe Institute of Mathematical Sciences
    Taramani, Chennai, Tamil Nadu, India
    e-mail
  • Haojie HongInstitut de Mathématiques de Bordeaux
    Université de Bordeaux & CNRS
    Talence, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image