A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Representation of even integers as a sum of squares of primes and powers of two

Volume 206 / 2022

Shehzad Hathi Acta Arithmetica 206 (2022), 353-372 MSC: Primary 11P32; Secondary 11P55, 11P05. DOI: 10.4064/aa220306-11-11 Published online: 21 December 2022

Abstract

In 1951, Linnik proved the existence of a constant $K$ such that every sufficiently large even number is the sum of two primes and at most $K$ powers of 2. Since then, this style of approximation has been considered for problems similar to the Goldbach conjecture. One such problem is the representation of a sufficiently large even number as the sum of four squares of primes and at most $k$ powers of 2. In 2014, Zhao proved this to be true with $k = 46$. In this paper, we reduce this to $k = 31$.

Authors

  • Shehzad HathiSchool of Science
    The University of New South Wales
    Canberra, Australia
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image