A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Correspondance de Langlands locale $p$-adique et anneaux de Kisin

Volume 208 / 2023

Pierre Colmez, Gabriel Dospinescu, Wiesława Nizioł Acta Arithmetica 208 (2023), 101-126 MSC: Primary 11Sxx; Secondary 11F85. DOI: 10.4064/aa220520-24-4 Published online: 28 June 2023

Abstract

We use a ${\cal B}$-adic completion and the $p$-adic local Langlands correspondence for ${\rm GL}_2({\bf Q}_p)$ to give a construction of Kisin’s rings and the attached universal Galois representations (in dimension $2$ and for ${\bf Q}_p$) directly from the classical Langlands correspondence. This yields, in particular, a uniform proof of the geometric Breuil–Mézard conjecture in the supercuspidal case.

Authors

  • Pierre ColmezCNRS, IMJ-PRG, Sorbonne Université
    4 place Jussieu
    75005 Paris, France
    e-mail
  • Gabriel DospinescuCNRS, UMPA
    École Normale Supérieure de Lyon
    46 allée d’Italie
    69007 Lyon, France
    e-mail
  • Wiesława NiziołCNRS, IMJ-PRG, Sorbonne Université
    4 place Jussieu
    75005 Paris, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image