Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Large values of and \sigma (n)/n

Volume 209 / 2023

Christian Axler, Jean-Louis Nicolas Acta Arithmetica 209 (2023), 357-383 MSC: Primary 11N56; Secondary 11N37. DOI: 10.4064/aa220705-12-10 Published online: 19 December 2022

Abstract

Let n be a positive integer, \varphi (n) the Euler totient function, and \sigma (n)=\sum _{d\mid n}d the sum of the divisors of n. It is easy to prove that \sigma (n)/n\le n/\varphi (n). Landau proved that when n\to \infty , \limsup n/(\varphi (n)\log \log n) = e^\gamma , where \gamma =0.577\ldots is the Euler constant, and a few years later, Gronwall proved that \limsup \sigma (n)/(n\log \log n) is also equal to e^\gamma . Afterwards, several authors gave effective upper bounds for n/\varphi (n) and \sigma (n)/n, either under the Riemann hypothesis or without assuming it. Let X \ge 4 be a real number and \Phi (X) the maximum of n/\varphi (n) for n\le X. Similarly, we denote by \Sigma (X) the maximum of \sigma (n)/n for n\le X. Our first result gives effective upper and lower bounds for \Phi (X)/\Sigma (X). Next, we give new effective upper bounds for n/\varphi (n) and for \sigma (n)/n.

Authors

  • Christian AxlerInstitute of Mathematics
    Heinrich Heine University Düsseldorf
    40225 Düsseldorf, Germany
    e-mail
  • Jean-Louis NicolasUniv. Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208
    Institut Camille Jordan, Mathématiques
    F-69622 Villeurbanne Cedex, France
    math.univ-lyon1.fr/homes-www/nicolas/
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image