A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

The set of values of any finite iteration of Euler’s $\varphi $ function contains long arithmetic progressions

Volume 214 / 2024

R. Balasubramanian, Jean-Marc Deshouillers, Sanoli Gun Acta Arithmetica 214 (2024), 343-351 MSC: Primary 11B83; Secondary 11B05, 11N32, 11N64 DOI: 10.4064/aa230601-7-9 Published online: 24 January 2024

Abstract

Assuming the validity of Dickson’s conjecture, we show that the set of values of iterated Euler’s totient $\varphi $ function $\varphi \circ \cdots \circ \varphi $ ($n$ times) contains arbitrarily long arithmetic progressions with an explicitly given common difference $D_a$ depending only on $a$. This extends a previous result (case $a = 1$) of Deshouillers, Eyyunni and Gun. In particular, this implies that this set has upper Banach density at least $1/D_a \gt 0$.

Authors

  • R. BalasubramanianThe Institute of Mathematical Sciences
    HBNI, C.I.T. Campus, Taramani
    Chennai 600113, Tamil Nadu, India
    e-mail
  • Jean-Marc DeshouillersInstitut de Mathématiques de Bordeaux
    Université de Bordeaux, CNRS, Bordeaux INP
    33400 Talence, France
    e-mail
  • Sanoli GunThe Institute of Mathematical Sciences
    HBNI, C.I.T. Campus, Taramani
    Chennai 600113, Tamil Nadu, India
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image