A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

The multiplication table constant and sums of two squares

Volume 214 / 2024

Andrew Granville, Alisa Sedunova, Cihan Sabuncu Acta Arithmetica 214 (2024), 499-522 MSC: Primary 11N37; Secondary 11N36 DOI: 10.4064/aa230828-19-4 Published online: 5 June 2024

Abstract

We will show that the number of integers $\leq x$ that can be written as the square of an integer plus the square of a prime equals $\frac{\pi}{2} \cdot \frac{x}{\log x}$ minus a secondary term of size $x/(\log x)^{1+\delta +o(1)}$, where $\delta := 1 - \frac{1+\log \log 2}{\log 2} = 0.0860713320\dots $ is the multiplication table constant. Detailed heuristics suggest that this secondary term is asymptotic to $$ \frac{1}{\sqrt {\log\log x}} \cdot \frac x{(\log x)^{1+\delta }} $$ times a bounded, positive, $1$-periodic, non-constant function of $\frac{\log \log x}{\log 2}$.

Authors

  • Andrew GranvilleDépartement de Mathématiques
    et Statistique
    Université de Montréal
    Montréal, QC H3C 3J7, Canada
    e-mail
  • Alisa SedunovaCentre de Recherches Mathématiques
    et Statistique
    Université de Montréal
    Montréal, QC H3C 3J7, Canada
    and
    Department of Mathematics
    Purdue University
    West Lafayette, IN 47907-2067, USA
    e-mail
  • Cihan SabuncuDépartement de Mathématiques et Statistique
    Université de Montréal
    Montréal, QC H3C 3J7, Canada
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image