A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

A counterexample to the Pellian equation conjecture of Mordell

Volume 215 / 2024

Andreas Reinhart Acta Arithmetica 215 (2024), 85-95 MSC: Primary 11R11; Secondary 11R27 DOI: 10.4064/aa240214-3-4 Published online: 12 June 2024

Abstract

Let $d\geq 2$ be a squarefree integer, let $\omega \in \big \{\sqrt {d},\frac {1+\sqrt {d}}{2}\big \}$ be such that $\mathbb {Z}[\omega ]$ is the ring of algebraic integers of the real quadratic number field $\mathbb {Q}(\sqrt {d})$, let $\varepsilon \gt 1$ be the fundamental unit of $\mathbb {Z}[\omega ]$ and let $x$ and $y$ be the unique nonnegative integers with $\varepsilon =x+y\omega $. In this note, we extend and study the list of known squarefree integers $d\geq 2$, for which $y$ is divisible by $d$ (cf. OEIS A135735). As a byproduct, we present a counterexample to a conjecture of L. J. Mordell.

Authors

  • Andreas ReinhartInstitut für Mathematik und Wissenschaftliches Rechnen
    Karl-Franzens-Universität Graz
    NAWI Graz
    Heinrichstraße 36, 8010 Graz, Austria
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image