A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On polynomials with roots modulo almost all primes

Volume 205 / 2022

Christian Elsholtz, Benjamin Klahn, Marc Technau Acta Arithmetica 205 (2022), 251-263 MSC: Primary 11R09; Secondary 11R32. DOI: 10.4064/aa220407-9-7 Published online: 2 September 2022

Abstract

Call a monic integer polynomial exceptional if it has a root modulo all but a finite number of primes, but does not have an integer root. We classify all irreducible monic integer polynomials $h$ for which there is an irreducible monic quadratic $g$ such that the product $gh$ is exceptional. We construct exceptional polynomials with all factors of the form $X^{p}-b$ with $p$ prime and $b$ square-free.

Authors

  • Christian ElsholtzInstitut für Analysis und Zahlentheorie
    TU Graz
    Kopernikusgasse 24/II
    8010 Graz, Austria
    e-mail
  • Benjamin KlahnInstitut für Analysis und Zahlentheorie
    TU Graz
    Kopernikusgasse 24/II
    8010 Graz, Austria
    e-mail
  • Marc TechnauInstitut für Analysis und Zahlentheorie
    TU Graz
    Kopernikusgasse 24/II
    8010 Graz, Austria
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image