A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Mean values of ratios of the Riemann zeta function

Volume 216 / 2024

Daodao Yang Acta Arithmetica 216 (2024), 213-226 MSC: Primary 11M06 DOI: 10.4064/aa230720-10-6 Published online: 29 October 2024

Abstract

We prove that $$\int _{T}^{2T} \bigg|\frac {\zeta ({1}/{2}+{\rm i} t)}{\zeta (1+2{\rm i} t)}\bigg |^2\, {\rm d} t = \frac {1}{\zeta (2)} T \log T + \biggl ( \frac {\log \frac {2}{\pi } + 2\gamma -1 }{\zeta (2)} -4 \,\frac {\zeta ^{\prime }(2)}{\zeta ^2(2)} \biggr ) T + O(T\, (\log T)^{-2023} )$$ for all $T \geqslant 100$. For given $a\in \mathbb N $, we also establish similar formulas for second moments of $|\zeta (1/2 + {\rm i} t)/\zeta (1 + {\rm i} at)|$, namely $$\lim _{a \to \infty } \lim _{T \to \infty }\frac {1}{T \log T} \int _{T}^{2T} \bigg|\frac {\zeta ({1}/{2}+{\rm i} t)}{\zeta (1+{\rm i} at)}\bigg |^2\, {\rm d} t = \frac {\zeta (2)}{\zeta (4)}. $$

Authors

  • Daodao YangInstitute of Analysis and Number Theory
    Graz University of Technology
    A-8010 Graz, Austria
    and
    Département de mathématiques et de statistique
    Université de Montréal
    Montréal, QC H3C 3J7, Canada
    e-mail
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image