Pencils of irreducible rational curves and plane Jacobian conjecture
Volume 101 / 2011
Annales Polonici Mathematici 101 (2011), 47-53
MSC: Primary 14R15, 14R25; Secondary 14E20.
DOI: 10.4064/ap101-1-5
Abstract
In certain cases the invertibility of a polynomial map $F=(P,Q): \mathbb{C}^2\rightarrow \mathbb{C}^2$ can be characterized by the irreducibility and the rationality of the curves $aP+bQ=0$, $(a:b)\in \mathbb{P}^1$.