Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Compactness of composition operators acting on weighted Bergman–Orlicz spaces

Volume 103 / 2012

Ajay K. Sharma, S. Ueki Annales Polonici Mathematici 103 (2012), 1-13 MSC: Primary 47B33, 46E10; Secondary 30D55. DOI: 10.4064/ap103-1-1

Abstract

We characterize compact composition operators acting on weighted Bergman–Orlicz spaces where \alpha > -1 and \psi is a strictly increasing, subadditive convex function defined on [0 , \infty) and satisfying \psi(0) = 0, the growth condition \lim_{t \rightarrow \infty}\displaystyle \psi(t)/t = \infty and the \Delta_2-condition. In fact, we prove that C_{\varphi} is compact on \mathcal{A}^{\psi}_\alpha if and only if it is compact on the weighted Bergman space \mathcal{A}^{2}_{\alpha}.

Authors

  • Ajay K. SharmaSchool of Mathematics
    Shri Mata Vaishno Devi University
    Kakryal
    Katra-182320, J&K, India
    e-mail
  • S. UekiFaculty of Engineering
    Ibaraki University
    Hitachi 316-8511, Japan
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image