A+ CATEGORY SCIENTIFIC UNIT

Compactness of composition operators acting on weighted Bergman–Orlicz spaces

Volume 103 / 2012

Ajay K. Sharma, S. Ueki Annales Polonici Mathematici 103 (2012), 1-13 MSC: Primary 47B33, 46E10; Secondary 30D55. DOI: 10.4064/ap103-1-1

Abstract

We characterize compact composition operators acting on weighted Bergman–Orlicz spaces \[ \mathcal{A}^{\psi}_\alpha = \left\{f \in H(\mathbb D) : \int_{\mathbb D} \psi(| f(z)|)\,d A_\alpha(z) < \infty\right \}, \] where $\alpha > -1$ and $\psi$ is a strictly increasing, subadditive convex function defined on $[0 , \infty)$ and satisfying $\psi(0) = 0,$ the growth condition $\lim_{t \rightarrow \infty}\displaystyle \psi(t)/t = \infty $ and the $\Delta_2$-condition. In fact, we prove that $C_{\varphi}$ is compact on $\mathcal{A}^{\psi}_\alpha$ if and only if it is compact on the weighted Bergman space $\mathcal{A}^{2}_{\alpha}.$

Authors

  • Ajay K. SharmaSchool of Mathematics
    Shri Mata Vaishno Devi University
    Kakryal
    Katra-182320, J&K, India
    e-mail
  • S. UekiFaculty of Engineering
    Ibaraki University
    Hitachi 316-8511, Japan
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image