The rigidity theorem for Landsberg hypersurfaces of a Minkowski space
Volume 104 / 2012
Annales Polonici Mathematici 104 (2012), 153-160
MSC: Primary 53C60; Secondary 53C40.
DOI: 10.4064/ap104-2-3
Abstract
Let $M^n$ be a compact Landsberg hypersurface of a Minkowski space $(V^{n+1}, \overline {F})$ with constant mean curvature $H$. Using the Gauss formula for the Chern connection of Finsler submanifolds, we prove that if $M$ is convex, then $M$ is Riemannian with constant curvature.