Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Existence and asymptotic behavior of positive solutions for elliptic systems with nonstandard growth conditions

Volume 104 / 2012

Honghui Yin, Zuodong Yang Annales Polonici Mathematici 104 (2012), 293-308 MSC: Primary 35J25; Secondary 35J60. DOI: 10.4064/ap104-3-6

Abstract

Our main purpose is to establish the existence of a positive solution of the system where \Omega\subset {\mathbb R}^N is a bounded domain with C^2 boundary, F(x,u,v)=\lambda^{p(x)}[g(x)a(u)+f(v)], H(x,u,v)=\lambda^{q(x)} [g(x)b(v)+h(u)], \lambda>0 is a parameter, p(x), q(x) are functions which satisfy some conditions, and -\triangle_{p(x)}u=-\mbox{div}(|\nabla u|^{p(x)-2}\nabla u) is called the p(x)-Laplacian. We give existence results and consider the asymptotic behavior of solutions near the boundary. We do not assume any symmetry conditions on the system.

Authors

  • Honghui YinInstitute of Mathematics
    School of Mathematical Sciences
    Nanjing Normal University
    Nanjing, Jiangsu 210046, China
    and
    School of Mathematical Sciences
    Huaiyin Normal University
    Huaian, Jiangsu 223001, China
    e-mail
  • Zuodong YangInstitute of Mathematics
    School of Mathematical Sciences
    Nanjing Normal University
    Nanjing, Jiangsu 210046, China
    and
    College of Zhongbei
    Nanjing Normal University
    Nanjing, Jiangsu 210046, China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image