A+ CATEGORY SCIENTIFIC UNIT

A note on generalized projections in $c_{0}$

Volume 111 / 2014

Beata Deręgowska, Barbara Lewandowska Annales Polonici Mathematici 111 (2014), 59-72 MSC: Primary 41A52; Secondary 47A58. DOI: 10.4064/ap111-1-5

Abstract

Let $V \subset Z$ be two subspaces of a Banach space $X$. We define the set of generalized projections by $$ \mathcal {P}_V(X,Z):=\{ P \in \mathcal {L}(X,Z): P|_V ={\rm id} \} . $$ Now let $X=c_0$ or $l^m_\infty ,$ $Z:=\mathop {\rm ker}f$ for some $f\in X^* $ and $V:=Z\cap l^{n}_\infty $ $(n < m).$ The main goal of this paper is to discuss existence, uniqueness and strong uniqueness of a minimal generalized projection in this case. Also formulas for the relative generalized projection constant and the strong uniqueness constant will be given (cf. J. Blatter and E. W. Cheney [Ann. Mat. Pura Appl. 101 (1974), 215–227] and G. Lewicki and A. Micek [J. Approx. Theory 162 (2010), 2278–2289] where the case of projections has been considered). We discuss both the real and complex cases.

Authors

  • Beata DeręgowskaFaculty of Mathematics and Computer Science
    Jagiellonian University
    Łojasiewicza 6
    30-048 Kraków, Poland
    e-mail
  • Barbara LewandowskaFaculty of Mathematics and Computer Science
    Jagiellonian University
    Łojasiewicza 6
    30-048 Kraków, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image