Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Strict plurisubharmonicity of Bergman kernels on generalized annuli

Volume 111 / 2014

Yanyan Wang Annales Polonici Mathematici 111 (2014), 237-243 MSC: Primary 32A25; Secondary 32U05. DOI: 10.4064/ap111-3-2

Abstract

Let be a family of generalized annuli over a domain U. We show that the logarithm of the Bergman kernel K_{\zeta}(z) of A_\zeta is plurisubharmonic provided \rho\in {\rm PSH}(U). It is remarkable that A_\zeta is non-pseudoconvex when the dimension of A_\zeta is larger than one. For standard annuli in {\mathbb C}, we obtain an interesting formula for \partial^2 \log K_{\zeta}/\partial \zeta\partial\bar{\zeta}, as well as its boundary behavior.

Authors

  • Yanyan WangDepartment of Mathematics
    Tongji University
    200092 Shanghai, China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image