Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Hölder regularity for solutions to complex Monge–Ampère equations

Volume 113 / 2015

Mohamad Charabati Annales Polonici Mathematici 113 (2015), 109-127 MSC: Primary 32W20, 32U15; Secondary 35J96. DOI: 10.4064/ap113-2-1

Abstract

We consider the Dirichlet problem for the complex Monge–Ampère equation in a bounded strongly hyperconvex Lipschitz domain in . We first give a sharp estimate on the modulus of continuity of the solution when the boundary data is continuous and the right hand side has a continuous density. Then we consider the case when the boundary value function is \mathcal {C}^{1,1} and the right hand side has a density in L^p(\varOmega ) for some p>1, and prove the Hölder continuity of the solution.

Authors

  • Mohamad CharabatiInstitut de Mathématiques de Toulouse
    Université Paul Sabatier
    118 Route de Narbonne
    31062 Toulouse Cedex 09, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image