Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

On the lattice of polynomials with integer coefficients: the covering radius in

Volume 115 / 2015

Wojciech Banaszczyk, Artur Lipnicki Annales Polonici Mathematici 115 (2015), 123-144 MSC: Primary 41A10; Secondary 52C07. DOI: 10.4064/ap115-2-2

Abstract

The paper deals with the approximation by polynomials with integer coefficients in L_p(0,1), 1\le p\le \infty . Let \boldsymbol {P}_{n,r} be the space of polynomials of degree \le n which are divisible by the polynomial x^r(1-x)^r, r\ge 0, and let \boldsymbol {P}_{n,r}^\mathbb {Z}\subset \boldsymbol {P}_{n,r} be the set of polynomials with integer coefficients. Let \mu (\boldsymbol {P}_{n,r}^\mathbb {Z};L_p) be the maximal distance of elements of \boldsymbol {P}_{n,r} from \boldsymbol {P}_{n,r}^\mathbb {Z} in L_p(0,1). We give rather precise quantitative estimates of \mu (\boldsymbol {P}_{n,r}^\mathbb {Z};L_2) for n\gtrsim 6r. Then we obtain similar, somewhat less precise, estimates of \mu (\boldsymbol {P}_{n,r}^\mathbb {Z};L_p) for p\not =2. It follows that \mu (\boldsymbol {P}_{n,r}^\mathbb {Z};L_p)\asymp n^{-2r-2/p} as n\to \infty . The results partially improve those of Trigub [Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962)].

Authors

  • Wojciech BanaszczykFaculty of Mathematics and Computer Science
    University of Łódź
    90-238 Łódź, Poland
    e-mail
  • Artur LipnickiFaculty of Mathematics and Computer Science
    University of Łódź
    90-238 Łódź, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image