A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Global existence and asymptotic behavior of solutions for the complex-valued nonlinear heat equation

Volume 121 / 2018

Amel Chouichi, Mohamed Majdoub, Slim Tayachi Annales Polonici Mathematici 121 (2018), 99-131 MSC: 35K15, 35K55, 35K65, 35B40. DOI: 10.4064/ap170706-9-5 Published online: 7 September 2018

Abstract

We are concerned with a parabolic system derived from the complex-valued nonlinear heat equation $\partial _t z=\varDelta z+z^p,$ $t \gt 0$, $x\in \mathbb {R}^{N},$ with initial data $z_{0}=u_{0}+{\rm i}v_{0},$ where $p \gt 1$ is an integer. We study the global existence and the large time behavior of solutions for data $u_{0}(x)\sim c|x|^{-2\alpha _1}$, $v_{0}(x)\sim c|x|^{-2\alpha _1’},$ as $|x|\rightarrow \infty $ ($|c|$ is sufficiently small) such that $\max(\alpha _1,\alpha _1’) \lt N/2,$ $\alpha _1\geq 1/(p-1)$ and $\alpha _1’\geq 1/(p-1)$ if $p$ is odd, $\alpha _1’\geq (1+\alpha _1)/p$ if $p$ is even. Since we may take different decay rates for the real part and imaginary part of the initial data, we obtain asymptotic behaviors which cannot occur for the real-valued nonlinear heat equation. Also, these asymptotic behaviors depend on the parity of the power of the nonlinearity.

Authors

  • Amel ChouichiUniversité de Tunis El Manar
    Faculté des Sciences de Tunis
    Département de Mathématiques
    Laboratoire Équations aux Dérivées Partielles LR03ES04
    2092 Tunis, Tunisie
    e-mail
  • Mohamed MajdoubDepartment of Mathematics
    College of Science
    Imam Abdulrahman Bin Faisal University
    P.O. Box 1982, Dammam, Saudi Arabia
    e-mail
  • Slim TayachiUniversité de Tunis El Manar
    Faculté des Sciences de Tunis
    Département de Mathématiques
    Laboratoire Équations aux Dérivées Partielles LR03ES04
    2092 Tunis, Tunisie
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image