Extendability and domains of holomorphy in infinite-dimensional spaces
Richard M. Aron, Stéphane Charpentier, Paul M. Gauthier, Manuel Maestre, Vassili Nestoridis
Annales Polonici Mathematici 123 (2019), 31-41
MSC: Primary 46G20; Secondary 58B12.
DOI: 10.4064/ap180821-5-12
Published online: 12 April 2019
Abstract
We study the notions of extendability and domain of holomorphy in the infinite-dimensional case. In this setting it is also true that the notions of domain of holomorphy and weak domain of holomorphy are equivalent. We also prove that the set of non-extendable functions belonging to some classes $X(B)\subset H(B)$, $B$ being the open unit ball in a separable complex Banach space, is a lineable and dense $G_\delta .$ Moreover, when $\varOmega $ is $H_b$-holomorphically convex (defined in the text), it is shown that the set of non-extendable holomorphic functions on $\varOmega $ is a lineable and dense $G_\delta $ set.
Authors
- Richard M. AronDepartment of Mathematical Sciences
Kent State University,
Kent, OH 44242, U.S.A.
e-mail
- Stéphane CharpentierCentre de Mathématiques
et Informatique (CMI)
Bureau 303
and
Aix-Marseille Université
Technopôle Château-Gombert
39, rue F. Joliot Curie
13453 Marseille Cedex 13, France
e-mail
- Paul M. GauthierDépartement de Mathématiques et de Statistique
Université de Montréal
Montréal, Que., H3C 3J7, Canada
e-mail
- Manuel MaestreDepartamento de Análisis Matemático
Universidad de Valencia
46100 Burjassot (Valencia), Spain
e-mail
- Vassili NestoridisDepartment of Mathematics
University of Athens
15784 Panepistemiopolis
Athens, Greece
e-mail