A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On the regularity of a semialgebraic function

Volume 125 / 2020

Ali El-Siblani, Krzysztof Kurdyka Annales Polonici Mathematici 125 (2020), 25-46 MSC: Primary 14P10; Secondary 14P20, 32B20, 58A07. DOI: 10.4064/ap190719-19-3 Published online: 15 June 2020

Abstract

Let $f$ be a semialgebraic function of class $C^1$, defined on an open set ${U \subset \mathbb R ^n}$. Let $P(x,y) \in \mathbb R [x_1,\dots , x_n, y]$ be a polynomial of degree $d$ such that ${P(x,f(x)) = 0}$, $x\in U$. We prove that if $f$ is of class $C^K$ with $K \gt \frac {1}{2}d^7$, then $f$ is analytic. If $n=1$, then it suffices that $K \gt \frac {1}{2}d^2$.

Authors

  • Ali El-SiblaniFaculté des sciences, section IV
    Université Libanaise
    Houche El-Oumaraa, Zahlé, Lebanon
    e-mail
  • Krzysztof KurdykaUniv. Savoie Mont Blanc
    CNRS UMR 5127 LAMA
    73000 Chambéry, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image