A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Generalized orthotoric Kähler surfaces

Volume 128 / 2022

Włodzimierz Jelonek Annales Polonici Mathematici 128 (2022), 193-220 MSC: Primary 53C55; Secondary 53C25, 53B35. DOI: 10.4064/ap211112-19-3 Published online: 20 May 2022

Abstract

We describe QCH Kähler surfaces $(M,g,J)$ of generalized orthotoric type. We introduce a distinguished orthonormal frame on $(M,g)$ and give the structure equations for $(M,g,J)$. In the case when the opposite Hermitian structure $I$ is conformally Kähler and $(M,g,J)$ is not hyperkähler we integrate these structure equations and construct orthotoric Kähler surfaces in a new way. We also investigate the hyperkähler case. We prove in a simple way that if $(M,g,J)$ is a hyperkähler surface with a degenerate Weyl tensor $W^-$ (i.e. a QCH hyperkähler surface) then among all hyperkähler structures on $(M,g)$ there exists a Kähler structure $J_0$ such that $(M,g,J_0)$ is of Calabi type or of orthotoric type.

Authors

  • Włodzimierz JelonekInstitute of Mathematics
    Cracow University of Technology
    Warszawska 24
    31-155 Kraków, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image