A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Extended escaping set for meromorphic functions outside a countable set of transcendental singularities

Volume 129 / 2022

Patricia Domínguez, Marco A. Montes de Oca, Guillermo J. F. Sienra Annales Polonici Mathematici 129 (2022), 25-41 MSC: Primary 37F10; Secondary 30D30. DOI: 10.4064/ap190820-31-3 Published online: 20 June 2022

Abstract

We consider the class $\mathcal K $ of functions $f$ that are meromorphic outside a compact and countable set $B(f)$, which is the closure of isolated transcendental singularities of $f$. We define the extended escaping set $\widehat I (f)$ and prove that $\widehat I (f)$ is a dynamical invariant. Using curves contained in $\widehat I (f)$ we define the itinerary of an escaping curve for transcendental singularities. As an example we study the function $f(z)=e^{\frac {1}{\sin z}}+z+2\pi $ and show that it has an escaping curve contained in a wandering domain with a wandering end-point.

Authors

  • Patricia DomínguezFacultad de Ciencias Físico-Matemáticas
    Benemérita Universidad Autónoma
    de Puebla
    C.U. Puebla, 72570, Mexico
    e-mail
  • Marco A. Montes de OcaFacultad de Ciencias Exactas
    Universidad Juárez del Estado de Durango
    Durango, 34113, Mexico
    e-mail
  • Guillermo J. F. SienraFacultad de Ciencias
    Universidad Nacional Autónoma de México
    C.U. Ciudad de México, 04510, Mexico
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image