A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Existence and large time behavior for a Keller–Segel model with gradient dependent chemotactic sensitivity

Volume 130 / 2023

Jiayi Han, Changchun Liu Annales Polonici Mathematici 130 (2023), 33-61 MSC: Primary 92C17; Secondary 35B40, 35K51, 35K55. DOI: 10.4064/ap220803-7-1 Published online: 6 March 2023

Abstract

The purpose of this paper is to study the chemotaxis growth system $$ \begin{cases} u_t=\Delta u-\nabla \cdot (u|\nabla v|^{p-2}\nabla v)+au-bu^{\alpha},& x\in \Omega ,\, t \gt 0,\\ v_t=\Delta v-v+w,& x\in \Omega ,\, t \gt 0,\\ w_t=\Delta w-w+u,& x\in \Omega ,\, t \gt 0, \end{cases}$$ in a smooth bounded domain $\Omega \subset \mathbb R^n$, $n\geq 2$ with nonnegative initial data and homogeneous boundary conditions of Neumann type for $u,v$ and $w$. We will show that the problem admits a global weak solution when $p\in (1,\frac{n\alpha +2n-6\alpha +4}{2n-6\alpha +4})$, $3\alpha -2\leq n\leq 4\alpha -2$, and when $p \gt 1$, $n \lt 3\alpha -2$. What is more, under appropriate conditions, this global solution with nonnegative initial data $(u_0,v_0,w_0)$ eventually becomes a classical solution of the system and satisfies \begin{align*} u\rightarrow (a_{+}/b)^{\frac{1}{\alpha -1}},\quad v\rightarrow (a_{+}/b)^{\frac{1}{\alpha -1}},\quad w\rightarrow(a_{+}/b)^{\frac{1}{\alpha -1}}\quad\ \text{in}\quad L^{\infty}(\Omega), \end{align*} as $t\rightarrow \infty.$

Authors

  • Jiayi HanDepartment of Mathematics
    Jilin University
    130012 Changchun, China
    e-mail
  • Changchun LiuDepartment of Mathematics
    Jilin University
    130012 Changchun, China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image