A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Characterization results and a sharp integral inequality for LW spacelike hypersurfaces in locally symmetric Lorentzian spaces

Volume 132 / 2024

Henrique F. de Lima, Fábio R. dos Santos, Lucas S. Rocha Annales Polonici Mathematici 132 (2024), 25-49 MSC: Primary 53C42; Secondary 53C20, 53C50 DOI: 10.4064/ap230112-19-9 Published online: 29 January 2024

Abstract

Our aim is to study the geometry of linear Weingarten (LW) spacelike hypersurfaces immersed in a locally symmetric Lorentzian space obeying some standard curvature conditions. Under appropriate constraints on the scalar curvature function, we use a suitable extension of the generalized maximum principle of Omori–Yau to show that a complete LW spacelike hypersurface must be either totally umbilical or isometric to an isoparametric hypersurface with two distinct principal curvatures, where one of them is simple. Furthermore, we deal with the parabolicity of complete LW hypersurfaces with respect to a Cheng–Yau modified operator and we also establish a sharp integral inequality concerning compact LW hypersurfaces (without boundary) in a locally symmetric Einstein spacetime. Applications to the de Sitter space are also given.

Authors

  • Henrique F. de LimaDepartamento de Matemática
    Universidade Federal de Campina Grande
    58.429-970 Campina Grande, Paraíba, Brazil
    e-mail
  • Fábio R. dos SantosDepartamento de Matemática
    Universidade Federal de Pernambuco
    50.740-540 Recife, Pernambuco, Brazil
    e-mail
  • Lucas S. RochaDepartamento de Matemática
    Universidade Federal de Campina Grande
    58.429-970 Campina Grande, Paraíba, Brazil
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image