Contents of Number 3
Volume 19 / 1967
-
Sur les inégalités mixtes entre les intégrales de l'équation aux dérivées partielles $z_x = f(x, y, z, z_y)$ Annales Polonici Mathematici 19 (1967) , 235-247 DOI: 10.4064/ap-19-3-235-247
-
Remarques sur des inégalités entre les intégrales des équations aux dérivées partielles du premier ordre Annales Polonici Mathematici 19 (1967) , 249-255 DOI: 10.4064/ap-19-3-249-255
-
Connections between symmetry or asymmetry of the equations $f_1(x_1+...+x_n) = ∑_{(i_1},...,i_n)} f(x_i_1)...f_n(x_i_n)$ and their solutions Annales Polonici Mathematici 19 (1967) , 257-269 DOI: 10.4064/ap-19-3-257-269
-
On some symmetrical equations of the form $f_1(x_1+...+x_n) = ∑_{i_1,...,i_n}) f_1(x_i_1)...f_n(x_i_n)$ Annales Polonici Mathematici 19 (1967) , 271-286 DOI: 10.4064/ap-19-3-271-286
-
Bemerkungen über Zeichen der Elemente der Matrix der Grundlösungen für parabolische Systeme von partiellen Differentialgleichungen zweiter Ordnung Annales Polonici Mathematici 19 (1967) , 287-300 DOI: 10.4064/ap-19-3-287-300
-
Remarks on minimax solutions Annales Polonici Mathematici 19 (1967) , 301-306 DOI: 10.4064/ap-19-3-301-306
-
On the non-existence of maximal solutions for hyperbolic differential equations Annales Polonici Mathematici 19 (1967) , 307-311 DOI: 10.4064/ap-19-3-307-311
-
A difference method for certain hyperbolic systems of non-linear partial differential equations of the first order Annales Polonici Mathematici 19 (1967) , 313-322 DOI: 10.4064/ap-19-3-313-322
-
Sur la notion du biscalaire Annales Polonici Mathematici 19 (1967) , 323-330 DOI: 10.4064/ap-19-3-323-330
-
On vanishing n-th ordered differences and Hamel bases Annales Polonici Mathematici 19 (1967) , 331-336 DOI: 10.4064/ap-19-3-331-336
-
Determination of differential concomitants of the first class of a pair of covariant vectors in a two-dimensional space Annales Polonici Mathematici 19 (1967) , 337-341 DOI: 10.4064/ap-19-3-337-341
-
Determination of differential concomitants of the first class of a pair of contravariant vectors in a two-dimensional space Annales Polonici Mathematici 19 (1967) , 343-345 DOI: 10.4064/ap-19-3-343-345