Contents of Number 2
Volume 21 / 1968
-
Une modification de la condition de Liapounov pour les équations à paramètre retardé Annales Polonici Mathematici 21 (1969) , 103-111 DOI: 10.4064/ap-21-2-103-111
-
On some recurrence formulae for the H-function Annales Polonici Mathematici 21 (1969) , 113-117 DOI: 10.4064/ap-21-2-113-117
-
Remarks on the preceding paper of P. Anandani Annales Polonici Mathematici 21 (1969) , 120-123 DOI: 10.4064/ap-21-2-120-123
-
On finite summation, recurrence relations and identities of H-functions Annales Polonici Mathematici 21 (1969) , 125-137 DOI: 10.4064/ap-21-2-125-137
-
On generalizations of harmonic and Killing tensors Annales Polonici Mathematici 21 (1969) , 139-153 DOI: 10.4064/ap-21-2-139-153
-
Topology of Laplace transformable functions Annales Polonici Mathematici 21 (1969) , 155-160 DOI: 10.4064/ap-21-2-155-160
-
Die affin-zusammenhängenden Räume mit verunstalteter rekurrenter Krümmung Annales Polonici Mathematici 21 (1969) , 161-165 DOI: 10.4064/ap-21-2-161-165
-
Some remarks concerning the paper of S. Gołąb and A. Jakubowicz Annales Polonici Mathematici 21 (1969) , 167-169 DOI: 10.4064/ap-21-2-167-169
-
An additional note on entire functions represented by Dirichlet series (II) Annales Polonici Mathematici 21 (1969) , 171-174 DOI: 10.4064/ap-21-2-171-174
-
On the oscillatory behavior of the solutions of second order linear differential equations Annales Polonici Mathematici 21 (1969) , 175-194 DOI: 10.4064/ap-21-2-175-194
-
Le domaine de variation de la fonctionnelle $K[Fζ), \overline{F(ζ)}, F'(ζ), \overline{Fζ)}]$ dans la famille des fonctions méromorphes et univalentes dans le cercle |z| > 1 Annales Polonici Mathematici 21 (1969) , 195-215 DOI: 10.4064/ap-21-2-195-215
-
On differentiable solutions of Böttcher's functional equation Annales Polonici Mathematici 21 (1969) , 217-221 DOI: 10.4064/ap-21-2-217-221
-
Piecewise flatness and surface area Annales Polonici Mathematici 21 (1969) , 223-230 DOI: 10.4064/ap-21-2-223-230
-
Periodic solutions of $x'' + f(x)x'^{2n} + g(x) = μp(t)$ Annales Polonici Mathematici 21 (1969) , 231-237 DOI: 10.4064/ap-21-2-231-237
-
On the total curvature of a closed curve Annales Polonici Mathematici 21 (1969) , 239-244 DOI: 10.4064/ap-21-2-239-244
-
Correction to paper "Integral representation for even positive definite functions'' Annales Polonici Mathematici 21 (1969) , 245 DOI: 10.4064/ap-21-2-245