A+ CATEGORY SCIENTIFIC UNIT

Sur le nombre de Łojasiewicz à l'infini d'un polynôme

Volume 62 / 1995

Pierrette Cassou-Noguès, Ha Vui Annales Polonici Mathematici 62 (1995), 23-44 DOI: 10.4064/ap-62-1-23-44

Abstract

Résumé. Soit f un polynôme à deux indéterminées. On appelle nombre de Łojasiewicz à l'infini de f le nombre de Łojasiewicz à l'infini de son application gradient. Dans cet article nous montrons tout d'abord que l'on peut calculer le nombre de Łojasiewicz d'un polynôme à partir des diagrammes de Eisenbud et Neumann de toutes les courbes f(x,y) = t. Ensuite nous montrons que l'on peut définir un nombre de Łojasiewicz intrinsèque en prenant le maximum des nombres de Łojasiewicz de f ∘ ϕ si f est bon et le minimum des nombres de Łojasiewicz de f ∘ ϕ sinon, lorsque ϕ parcourt les automorphismes de ℂ². On donne un exemple où l'on ne peut pas trouver un automorphisme de ℂ² qui réalise à la fois le degré, le nombre de points à l'infini et le nombre de Łojasiewicz intrinsèques. On montre que si f est non dégénéré pour son polygone de Newton, ou satisfait les conditions de Oka, alors le degré, le nombre de points à l'infini et le nombre de Łojasiewicz sont le degré, le nombre de points à l'infini et le nombre de Łojasiewicz intrinsèques.

Authors

  • Pierrette Cassou-Noguès
  • Ha Vui

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image