A+ CATEGORY SCIENTIFIC UNIT

The Jacobian Conjecture in case of "non-negative coefficients"

Volume 66 / 1997

Ludwik Drużkowski Annales Polonici Mathematici 66 (1997), 67-75 DOI: 10.4064/ap-66-1-67-75

Abstract

It is known that it is sufficient to consider in the Jacobian Conjecture only polynomial mappings of the form $F(x₁,...,x_n) = x - H(x) := (x₁ - H₁(x₁,...,x_n),...,x_n - H_n(x₁,...,x_n))$, where $H_j$ are homogeneous polynomials of degree 3 with real coefficients (or $H_j = 0$), j = 1,...,n and H'(x) is a nilpotent matrix for each $x = (x₁,...,x_n) ∈ ℝ^n$. We give another proof of Yu's theorem that in the case of non-negative coefficients of H the mapping F is a polynomial automorphism, and we moreover prove that in that case $deg F^{-1} ≤ (deg F)^{ind F - 1}$, where $ind F := max{ind H'(x): x ∈ ℝ^n}$. Note that the above inequality is not true when the coefficients of H are arbitrary real numbers; cf. [E3].

Authors

  • Ludwik Drużkowski

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image