Valeurs critiques asymptotiques d'une fonction définissable dans une structure o-minimale
Volume 75 / 2000
Annales Polonici Mathematici 75 (2000), 35-45
DOI: 10.4064/ap-75-1-35-45
Abstract
We prove that the set of asymptotic critical values of a $C^1$ function definable in an o-minimal structure is finite, even if the structure is not polynomially bounded. As a consequence, the function is a locally trivial fibration over the complement of this set.