The Real Jacobian Conjecture for polynomials of degree 3
Volume 76 / 2001
Annales Polonici Mathematici 76 (2001), 121-125
MSC: Primary 14P99.
DOI: 10.4064/ap76-1-12
Abstract
We show that every local polynomial diffeomorphism $(f,g)$ of the real plane such that $\mathop {\rm deg}\nolimits f\leq 3$, $\mathop {\rm deg}\nolimits g\leq 3$ is a global diffeomorphism.