Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Le grand théorème de Picard pour les multifonctions analytiques finies

Volume 77 / 2001

Bernard Aupetit, Mustapha Ech-Chérif El Kettani Annales Polonici Mathematici 77 (2001), 189-196 MSC: 32A12, 46Hxx, 47Axx. DOI: 10.4064/ap77-2-5

Abstract

Let be a domain of the complex plane containing the origin. The famous great theorem of Émile Picard asserts that if h is holomorphic on D\setminus\{ 0\} , with an essential singularity at 0, then the image under h of any pointed neighbourhood of 0 covers all the complex plane, with at most one exception. Introducing the concept of essential singularity for analytic multifunctions, we extend this theorem to a finite analytic multifunction K, of degree N, defined on D\setminus\{ 0\}. In this case \bigcup _{0 < |\lambda |< r}K (\lambda ) covers all the complex plane, with at most 2N-1 exceptions. In particular, this theorem can be used in the case of N\times N matrices whose entries are holomorphic on D\setminus \{ 0\} with essential singularities at 0. In this case, if their spectra avoid 2N points on a pointed neighbourhood of 0, these spectra must be constant.

Authors

  • Bernard AupetitDépartement de mathématiques
    et de statistique
    Faculté des sciences et de génie
    Université Laval
    Québec, Canada, G1K 7P4
    e-mail
  • Mustapha Ech-Chérif El KettaniDépartement de mathématiques
    et informatique
    Faculté des sciences Dhar El-Mahraz
    B.P. 1796 Atlas
    Fès, Maroc
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image