Partial regularity of minimizers of quasiconvex integrals with subquadratic growth: the general case
Volume 77 / 2001
Annales Polonici Mathematici 77 (2001), 219-243
MSC: 49N60, 49N99, 35J45.
DOI: 10.4064/ap77-3-3
Abstract
We prove partial regularity for minimizers of the functional $\int _{{\mit \Omega } }f(x, u(x), Du(x))\, dx$ where the integrand $f(x, u, \xi )$ is quasiconvex with subquadratic growth: $|f(x, u, \xi )| \leq L(1+|\xi |^p) $, $p<2$. We also obtain the same results for $\omega $-minimizers.