Loading [MathJax]/config/TeX-AMS_HTML.js

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Matrix inequalities and the complex Monge–Ampère operator

Volume 83 / 2004

Jonas Wiklund Annales Polonici Mathematici 83 (2004), 211-220 MSC: 32F07, 32U25. DOI: 10.4064/ap83-3-3

Abstract

We study two known theorems regarding Hermitian matrices: Bellman's principle and Hadamard's theorem. Then we apply them to problems for the complex Monge–Ampère operator. We use Bellman's principle and the theory for plurisubharmonic functions of finite energy to prove a version of subadditivity for the complex Monge–Ampère operator. Then we show how Hadamard's theorem can be extended to polyradial plurisubharmonic functions.

Authors

  • Jonas WiklundMatematiska Institutionen
    Umeå Universitet
    S-901 87 Umeå, Sweden
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image