Convolution theorems for starlike and convex functions in the unit disc
Volume 84 / 2004
Abstract
Let denote the space of all analytic functions in the unit disc {\mit\Delta} with the normalization f(0)=f'(0)-1=0. For \beta <1, let {\cal P}_{\beta}^0=\{f\in {\cal A}: \mathop{\rm Re}\nolimits f'(z)> \beta, \,z\in{\mit\Delta}\}. For \lambda > 0, suppose that \cal F denotes any one of the following classes of functions: \eqalign{M_{1,\lambda}^{(1)}&=\{f\in {\cal A}:\mathop{\rm Re}\nolimits\{ z(zf'(z))' '\}> -\lambda , \, z\in {\mit\Delta} \},\cr M_{1,\lambda}^{(2)}&=\{f\in {\cal A}:\mathop{\rm Re}\nolimits\{ z(z^2f' '(z))' '\}> -\lambda , \, z\in {\mit\Delta}\},\cr M_{1,\lambda}^{(3)}&=\{f\in {\cal A}: \mathop{\rm Re}\nolimits \{\textstyle\frac{1}{2}(z(z^2f'(z))' ')'-1 \}> -\lambda, \,z \in {\mit\Delta} \}.\cr} The main purpose of this paper is to find conditions on \lambda and \gamma so that each f \in {\cal F} is in {\cal S}_\gamma or {\cal K}_\gamma , \gamma \in [0,1/2]. Here {\cal S}_\gamma and {\cal K}_\gamma respectively denote the class of all starlike functions of order \gamma and the class of all convex functions of order \gamma. As a consequence, we obtain a number of convolution theorems, namely the inclusions M_{1,\alpha}*{\cal G} \subset {\cal S}_{\gamma } and M_{1,\alpha}*{\cal G} \subset {\cal K}_{\gamma }, where \cal G is either {\cal P}_{\beta}^0 or M_{1,\beta}. Here M_{1,\lambda} denotes the class of all functions f in {\cal A} such that \mathop{\rm Re}\nolimits(zf' '(z))> -\lambda for z\in{\mit\Delta}.