A+ CATEGORY SCIENTIFIC UNIT

Decay estimates of solutions of a nonlinearly damped semilinear wave equation

Volume 85 / 2005

Aissa Guesmia, Salim A. Messaoudi Annales Polonici Mathematici 85 (2005), 25-36 MSC: 35B40, 35L55, 35B37. DOI: 10.4064/ap85-1-3

Abstract

We consider an initial boundary value problem for the equation $u_{tt}-{\mit \Delta } u-\nabla \phi \cdot \nabla u+f(u)+g(u_{t})=0$. We first prove local and global existence results under suitable conditions on $f$ and $g$. Then we show that weak solutions decay either algebraically or exponentially depending on the rate of growth of $g$. This result improves and includes earlier decay results established by the authors.

Authors

  • Aissa GuesmiaDépartement de Mathématiques
    UFR MIM, Université de Metz
    Ile de Saulcy
    57045 Metz, France
    e-mail
  • Salim A. MessaoudiMathematical Sciences Department
    KFUPM
    Dhahran 31261, Saudi Arabia
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image