Inégalités de Markov tangentielles locales sur les courbes algébriques singulières de ${\Bbb R}^{n}$
Volume 86 / 2005
Annales Polonici Mathematici 86 (2005), 59-77
MSC: 41A17, 41A25, 32F45, 32U35, 32C25, 14H95, 14P10.
DOI: 10.4064/ap86-1-7
Abstract
We prove that every singular algebraic curve in $\mathbb{R}^{n} $ admits local tangential Markov inequalities at each of its points. More precisely, we show that the Markov exponent at a point of a real algebraic curve $A$ is less than or equal to twice the multiplicity of the smallest complex algebraic curve containing $A$.