Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

The BIC of a singular foliation defined by an abelian group of isometries

Volume 89 / 2006

Martintxo Saralegi-Aranguren, Robert Wolak Annales Polonici Mathematici 89 (2006), 203-246 MSC: 53C12, 57R30, 55N33, 58A35, 22Fxx. DOI: 10.4064/ap89-3-1

Abstract

% We study the cohomology properties of the singular foliation determined by an action {\mit\Phi} \colon G \times M\to M where the abelian Lie group G preserves a riemannian metric on the compact manifold M. More precisely, we prove that the basic intersection cohomology \mathbb H^{*}_{\overline{p}}{(M/\mathcal F)} is finite-dimensional and satisfies the Poincaré duality. This duality includes two well known situations:

\bullet Poincaré duality for basic cohomology (the action {\mit\Phi} is almost free).

\bullet Poincaré duality for intersection cohomology (the group G is compact and connected).

Authors

  • Martintxo Saralegi-ArangurenLaboratoire de Mathématiques de Lens EA 2462
    Fédération CNRS Nord-Pas-de-Calais FR 2956
    Faculté des Sciences Jean Perrin
    Université d'Artois
    Rue Jean Souvraz S.P. 18
    62 307 Lens Cedex, France
    e-mail
  • Robert WolakInstitute of Mathematics
    Jagiellonian University
    Reymonta 4
    30-059 Kraków, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image