Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

A Green's function for -incomplete polynomials

Volume 90 / 2007

Joe Callaghan Annales Polonici Mathematici 90 (2007), 21-35 MSC: Primary 32U35. DOI: 10.4064/ap90-1-2

Abstract

Let K be any subset of \mathbb C^N . We define a pluricomplex Green's function V_{K,\theta} for \theta -incomplete polynomials. We establish properties of V_{K,\theta} analogous to those of the weighted pluricomplex Green's function. When K is a regular compact subset of \mathbb R^N , we show that every continuous function that can be approximated uniformly on K by \theta-incomplete polynomials, must vanish on K \setminus {\rm supp}\,(dd^{c} V_{K,\theta})^N . We prove a version of Siciak's theorem and a comparison theorem for \theta -incomplete polynomials. We compute {\rm supp}\,(dd^{c} V_{K,\theta})^N when K is a compact section.

Authors

  • Joe CallaghanDepartment of Mathematics
    University of Toronto
    Toronto, Ontario
    M5S 2E4, Canada
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image