Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Geometry of Puiseux expansions

Volume 93 / 2008

Maciej Borodzik, Henryk /Zo/l/adek Annales Polonici Mathematici 93 (2008), 263-280 MSC: Primary 14H50; Secondary 14H20, 14H45, 14B05. DOI: 10.4064/ap93-3-7

Abstract

We consider the space of complex affine lines % t\mapsto(x,y)=(\phi(t),\psi(t)) with monic polynomials \phi, \psi of fixed degrees and a map \mathrm{Expan} from \mathrm{Curv} to a complex affine space \mathrm{Puis} with \dim\mathrm{Curv}=\dim\mathrm{Puis}, which is defined by initial Puiseux coefficients of the Puiseux expansion of the curve at infinity. We present some unexpected relations between geometrical properties of the curves (\phi,\psi) and singularities of the map \mathrm{% Expan}. For example, the curve (\phi,\psi) has a cuspidal singularity iff it is a critical point of \mathrm{Expan}. We calculate the geometric degree of \mathrm{Expan} in the cases \gcd(\deg\phi,\deg\psi)\le 2 and describe the non-properness set of \mathrm{Expan}.

Authors

  • Maciej BorodzikInstitute of Mathematics
    University of Warsaw
    Banacha 2
    02-097 Warszawa, Poland
    e-mail
  • Henryk /Zo/l/adekInstitute of Mathematics
    University of Warsaw
    Banacha 2
    02-097 Warszawa, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image