Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Zero-set property of -minimal indefinitely Peano differentiable functions

Volume 94 / 2008

Andreas Fischer Annales Polonici Mathematici 94 (2008), 29-41 MSC: Primary 03C64; Secondary 14P10. DOI: 10.4064/ap94-1-3

Abstract

Given an o-minimal expansion \mathcal M of a real closed field R which is not polynomially bounded. Let \mathcal {TP}^\infty denote the definable indefinitely Peano differentiable functions. If we further assume that \mathcal M admits \mathcal {TP}^{\infty} cell decomposition, each definable closed subset A of R^n is the zero-set of a \mathcal {TP}^{\infty} function f:R^n\rightarrow R. This implies \mathcal {TP}^\infty approximation of definable continuous functions and gluing of \mathcal {TP}^\infty functions defined on closed definable sets.

Authors

  • Andreas FischerDepartment of Mathematics & Statistics
    University of Saskatchewan
    106 Wiggins Road
    Saskatoon, SK, S7N 5E6, Canada
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image