Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Carathéodory solutions of hyperbolic functional differential inequalities with first order derivatives

Volume 94 / 2008

Adrian Karpowicz Annales Polonici Mathematici 94 (2008), 53-78 MSC: 35L70, 35R10, 35R45. DOI: 10.4064/ap94-1-5

Abstract

We consider the Darboux problem for a functional differential equation: where the function u_{(x,y)}:[-a_{0},0]\times[-b_{0},0]\to \mathbb R^{k} is defined by u_{(x,y)}(s,t)=u({s+x},{t+y}) for (s,t)\in [-a_{0},0]\times[-b_{0},0]. We give a few theorems about weak and strong inequalities for this problem. We also discuss the case where the right-hand side of the differential equation is linear.

Authors

  • Adrian KarpowiczInstitute of Mathematics
    University of Gdańsk
    Wit Stwosz St. 57
    80-952 Gdańsk, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image