Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Lifting right-invariant vector fields and prolongation of connections

Volume 95 / 2009

W. M. Mikulski Annales Polonici Mathematici 95 (2009), 243-252 MSC: 58A20, 58A32. DOI: 10.4064/ap95-3-4

Abstract

We describe all -gauge-natural operators \cal A lifting right-invariant vector fields X on principal G-bundles P\to M with m-dimensional bases into vector fields \cal A(X) on the rth order principal prolongation W^rP=P^rM\times_MJ^rP of P\to M. In other words, we classify all \mathcal {P}\mathcal B_m(G)-natural transformations J^rLP\times_M W^rP\to TW^rP=LW^rP\times_MW^rP covering the identity of W^rP, where J^rLP is the r-jet prolongation of the Lie algebroid LP=TP/G of P, i.e. we find all \mathcal {P}\mathcal B_m(G)-natural transformations which are similar to the Kumpera–Spencer isomorphism J^rLP=LW^rP. We formulate axioms which characterize the flow operator of the gauge-bundle W^rP\to M. We apply the flow operator to prolongations of connections.

Authors

  • W. M. MikulskiInstitute of Mathematics
    Jagiellonian University
    /Lojasiewicza 6
    30-348 Kraków, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image