Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Fonctions biharmoniques adjointes

Volume 99 / 2010

Emmanuel P. Smyrnelis Annales Polonici Mathematici 99 (2010), 1-21 MSC: 31B30, 31D05. DOI: 10.4064/ap99-1-1

Abstract

The study of the equation or of the equivalent system L_{2}^{\ast }h_{2}=-h_{1}, L_{1}^{\ast }h_{1}=0, where L_{j} (j=1,2) is a second order elliptic differential operator, leads us to the following general framework: Starting from a biharmonic space, for example the space of solutions (u_{1},u_{2}) of the system L_{1}u_{1}=-u_{2}, L_{2}u_{2}=0, L_{j} (j=1,2) being elliptic or parabolic, and by means of its Green pairs, we construct the associated adjoint biharmonic space which is in duality with the initial one.

Authors

  • Emmanuel P. SmyrnelisDepartment of Mathematics
    University of Athens
    Athens, Greece
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image