Nonlinear unilateral problems in Orlicz spaces
Volume 33 / 2006
Applicationes Mathematicae 33 (2006), 217-241
MSC: 35J25, 35J60.
DOI: 10.4064/am33-2-6
Abstract
We prove the existence of solutions of the unilateral problem for equations of the type $Au -\textrm{div} \phi (u) = \mu$ in Orlicz spaces, where $A$ is a Leray–Lions operator defined on ${\cal D}(A)\subset W_0^1L_M({\mit\Omega})$, $\mu\in L^1({\mit\Omega})+W^{-1}E_{\overline M}({\mit\Omega})$ and $\phi\in C^0(\mathbb R, \mathbb R^N)$.