A+ CATEGORY SCIENTIFIC UNIT

Entropy solutions for nonlinear unilateral parabolic inequalities in Orlicz–Sobolev spaces

Volume 41 / 2014

Azeddine Aissaoui Fqayeh, Abdelmoujib Benkirane, Mostafa El Moumni Applicationes Mathematicae 41 (2014), 185-193 MSC: Primary 46E30; Secondary 35K85. DOI: 10.4064/am41-2-6

Abstract

We discuss the existence of entropy solution for the strongly nonlinear unilateral parabolic inequalities associated to the nonlinear parabolic equations $\frac {\partial u}{\partial t}-{\rm div}(a(x,t,u,\nabla u)+\varPhi (u)) + g(u)M(|\nabla u|) = \mu $ in $Q,$ in the framework of Orlicz–Sobolev spaces without any restriction on the $N$-function of the Orlicz spaces, where $-{\rm div} (a(x,t,u,\nabla u))$ is a Leray–Lions operator and $\varPhi \in C^{0}(\mathbb {R},\mathbb {R}^{N})$. The function $g(u)M(|\nabla u|)$ is a nonlinear lower order term with natural growth with respect to $|\nabla u|$, without satisfying the sign condition, and the datum $\mu $ belongs to $L^1(Q)$ or $L^1(Q)+W^{-1,x}E_{\overline {M}}(Q)$.

Authors

  • Azeddine Aissaoui FqayehLaboratory LAMA
    Department of Mathematics
    Faculty of Sciences Dhar El Mahraz
    University Sidi Mohamed Ben Abdellah
    P.O. Box 1796 Atlas
    Fez, Morocco
    e-mail
  • Abdelmoujib BenkiraneLaboratory LAMA
    Department of Mathematics
    Faculty of Sciences Dhar El Mahraz
    University Sidi Mohamed Ben Abdellah
    P.O. Box 1796 Atlas
    Fez, Morocco
    e-mail
  • Mostafa El MoumniLaboratory LAMA
    Department of Mathematics
    Faculty of Sciences Dhar El Mahraz
    University Sidi Mohamed Ben Abdellah
    P.O. Box 1796 Atlas
    Fez, Morocco
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image